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Decentralized delayed-feedback control of a coupled map model for open flow
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A decentralized delayed-feedback control of a coupled map model for open flow is studied theoretically. The
decentralized controllers can suppress turbulent behavior in the open flow model. The stability of the control
system is analyzed, and then we provide a procedure to design the decentralized controllers from uncertain
information of the local map and the coupling strength. The theoretical results are verified by some numerical
simulations.@S1063-651X~98!06209-6#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Ott, Grebogi, and Yorke proposed a method~the OGY
method! that stabilizes chaotic motions onto a desired u
stable periodic orbit~UPO! @1#. The OGY method has gen
erated great interest in the study of nonlinear science@2#. On
the other hand, Pyragas proposed a delayed-feedback co
~DFC! method that does not require a reference signal c
responding to the desired UPO@3#. The DFC method is a
practical tool for stabilizing real chaotic systems. As a co
sequence, this method has been successfully applied to
eral physical systems: laser systems@4,5#, electronic circuits
@6#, thin yttrium iron garnet films@7# and a magnetomechan
cal system@8#. The stability of the DFC systems has be
analyzed by several researchers@9–11#. Furthermore, a
discrete-time version of this method has been studied in
tail @4,12–15#. Most of these studies on the OGY and DF
methods dealt with temporal chaotic behavior in lo
dimensional systems.

In recent years, investigations of spatiotemporal cha
behavior and studies on controlling spatiotemporal cha
systems have attracted much interest@16–30#. Spatiotempo-
ral chaos occurs in partial different equations~PDE’s!,
coupled ordinary equations~COE’s! or coupled map lattices
~CML’s!. Although PDE’s and COE’s are exact models
real systems, the theoretical and numerical analyses of t
is difficult. Conversely, it is easy to analyze the behavior
the CML’s in theoretical and numerical works, since it h
discrete time, discrete space, and continuous state varia
The CML’s cannot identify real systems exactly; however
can display a behavior qualitatively similar to that of mo
realistic models. Hence the CML’s have been widely inv
tigated by many researchers@22#. In particular, various tech
niques have been proposed to control the CML’s@23–30#.
On the basis of the OGY approach, Astakhov, Anishchen
and Shabunin proposed a method for controlling a chain
the logistic maps@23#. Auerbach showed how an unsym
metrical CML can be controlled to behave periodically
the distributed controllers at several spatial locations@24#.
Konishi and Kokame showed that their learning control te
nique can stabilize the CML’s@25#. A feedback pinning
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technique for controlling the CML’s has been discuss
theoretically@26,27# and numerically@28#. Parmananda and
Jiang proposed a control technique that uses the differe
between a local state and a global average of the CM
@29#. Parmananda, Hildebrand, and Eiswirth proposed s
eral techniques based on the OGY and DFC methods@30#.

The bifurcations and pattern dynamics in an open fl
model described by a one-way coupled map lattice~OCML!
have been studied in detail@31,32#. The synchronization of
the OCML has been investigated by the positive conditio
Lyapunov exponents@33#. The synchronization has been a
plied to multichannel spread-spectrum communication@34#.
The suppression of turbulent behavior in the OCML cor
sponds to transformation of open flow systems from a tur
lent state to a laminar flow; hence, from a practical vie
point, the stabilization of the homogeneous state in
OCML is an important issue. The paucity of reports on th
issue prompted us to investigate it.

The purpose of the present paper is to propose a de
tralized delayed-feedback control~DDFC! to stabilize an un-
stable homogenous state of the OCML. This control syst
does not require information about the unstable homogen
state. For every local site a delayed-feedback controlle
used as a local controller. Each of the local controllers d
not require information about other sites; therefore, it wou
be easy to apply our control to practical open flow system
This paper analyzes the stability of the control system th
retically, and gives a solution for the problem of designi
the local controllers. Very recently, Ishi, Konishi, an
Kokame discussed a robust control problem for the exten
delayed-feedback control system@14#. We also discuss the
robust control problem for the OCML, and show some n
merical examples to verify the theoretical results.

This paper is organized as follows. Section II describ
the OCML and the control system. In Sec. III, we discuss
stability of the control system and give a procedure to des
the robust local controllers. In Sec. IV, we use the logis
map as the local map and present some numerical sim
tions. Finally, conclusions are presented in Sec. V.

II. CONTROL SYSTEM

Let us consider a one-way coupled map lattice with sizeN
~N-OCML!,

:
fu-
3055 © 1998 The American Physical Society
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xn11~1!5 f @xn~1!#,

xn11~ i !5~12«! f @xn~ i !#1« f @xn~ i 21!# ~ i 52,3, . . . ,N!,
~1!

wheren is the discrete time,i is the lattice site,xn( i ) is the
system state,N is the system size,f is an unknown one-
dimensional local map, and the parameter«P(0,1) is the
coupling strength. In the case of«50, each local site be
haves independently. TheN-OCML has an unstable homo
geneous state

@xn~1! xn~2! ¯ xn~N!#T5@xf xf ¯ xf #
T, ~2!

xf5 f ~xf !, ~3!

wherexf is the unstable fixed point~UFP! of the local mapf.
Note that each element of Eq.~2! is the UFP of the local
map. The purpose of this paper is that all sites converge
xf , that is

lim
n→1`

xn~ i !5xf ~ i 51,2, . . . ,N!,

by the local delayed-feedback controllers. We conside
DDFC system

xn11~1!5 f @xn~1!#1un~1!,
~4!

xn11~ i !5~12«! f @xn~ i !#1« f @xn~ i 21!#

1un~ i ! ~ i 52,3, . . . ,N!.

The local controllers are given by

un~1!5kl@xn~1!2xn21~1!#,
~5!

un~ i !5k@xn~ i !2xn21~ i !# ~ i 52,3, . . . ,N!,

wherekl , k are the feedback gains. Notice that each lo
controller does not use other site information. In Sec. III,
shall analyze the stability of a DDFC system consisting
Eqs.~4! and ~5!.

III. STABILITY ANALYSIS

In the OCML, it should be noted that the local sitexn( i )
is influenced only by theprevioussite xn( i 21). Now let us
assume that all the sitesxn( i ) ( i 52,3, . . . ,N) will be stabi-
lized in the order of the site number: a local sitexn( i ) will be
stabilized ontoxf after the previous sitexn( i 21) is stabi-
lized. The above assumption simplifies the stability analy

To begin with, we shall focus on the stability of the fir
sitexn(1). Since the first site is not influenced by other site
it is easy to derive the stability condition. The first site sy
tem can be linearized as

Fyn11~1!

zn11~1! G5FL1kl

1
2kl

0 GFyn~1!

zn~1! G , ~6!

yn~1!5xn~1!2xf , zn~1!5xn21~1!2xf , ~7!

where

L5
] f ~x!

]x U
x5xf

~8!
n

a

l
e
f

s.

,
-

is the slope of the local mapf at the unstable fixed pointxf .
Matrix ~6! has eigenvalues that are given as solutions of t
equation

l22l~L1kl !1kl50. ~9!

Jury’s criterion@35# allows us to derive the stability condi-
tion of the first site@see Fig. 1~a!#:

23,L,1,

0,11L12kl , ~10!

kl,1.

Conditions~10! are equal to the results of the papers@4,14#.
Next, we consider the stability of thei th sitexn( i ). If the

site xn( i 21) is stabilized ontoxf , the equation of thei th
site and thei th local controller will be described by

xn11~ i !5~12«! f @xn~ i !#1«xf1k@xn~ i !2xn21~ i !#.

This system can be linearized as

Fyn11~ i !
zn11~ i ! G5F ~12«!L1k

1
2k
0 GFyn~ i !

zn~ i ! G , ~11!

yn~ i !5xn~ i !2xf , zn~ i !5xn21~ i !2xf . ~12!

FIG. 1. Stable regions on theL-k plane.~a! The stable region of
Eq. ~9!. ~b! The stable region of Eq.~13!.
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The stability condition of the characteristic equation of m
trix ~11!,

l22l$~12«!L1k%1k50, ~13!

is given by the inequalities

2
3

12«
,L,

1

12«
,

0,2k1~12«!L11, ~14!

k,1.

Conditions~14! are illustrated in Fig. 1~b!.
The OCML has a propagation of activity in only one d

rection; therefore, the complexity of the dynamics can
reduced. The above simple stability conditions~10! and~14!
are due to the reduction in the complexity. On the oth
hand, if the connection of the lattices was two way, the
namics would be complicated. It should be noted that
simple results cannot be applied to two-way connection s
tems.

From the above analysis, we see that all sites converg
xf in the order of the site number, if the following condition
are satisfied:~i! The first site satisfies conditions~10!. ~ii !
The first site orbitxn(1) without control sometime visits th
neighborhood ofxf . ~iii ! The other sites satisfy condition
~14!. ~iv! The other site orbitsxn( i ) without control some-
time visit the neighborhood ofxf when the previous site
xn( i 21) have been stabilized onxf . From Figs. 1~a! and
1~b!, we note that there exist local controllers~5! such that
the conditions~10! and ~14! are satisfied if and only if the
slopeL exists within the following range:

23,L,1.

This clarifies that local controllers~5! cannot stabilize a clas
of the OCML ~i.e., L.1 or L,23!. Furthermore, the
stable regions shown in Figs. 1~a! and 1~b! allow us to de-
sign the local controllers theoretically. Conditions~10! and
~14! are satisfied if the feedback gains of the local controll
are chosen from

2
L

2
2

1

2
,kl,1, 2

12«

2
L2

1

2
,k,1. ~15!

This is a procedure to design the local controllers bya priori
knowledge ofL and «. If the slope L and the coupling
strength« were obtained in advance, inequalities~15! would
provide a useful design procedure. In most practical sit
tions, however, it is difficult to obtain a preciseL and«. For
such situations, we have to consider the robust control p
lem to design the controllers by the uncertain information

Let us assume that the uncertain information

«min,«,«max, Lmin,L,Lmax ~16!

is obtained in advance. The problem to be investigated i
design the local controllers such that the control systems~6!
and ~11!, including uncertainties~16!, are stable. To begin
with, we derive a sufficient condition for the existence of t
robust local controllers. We notice that if the lower and u
per limits of L satisfy
-

e

r
-
r

s-

on

s

-

b-

to

-

23,Lmin , Lmax,1, ~17!

then there exist local controllers~5! such that conditions~10!
and~14! are satisfied. If conditions~17! are satisfied, then we
can design robust local controllers. The feedback gains
local controllers~5! should be chosen from

2
1

2
Lmin2

1

2
,kl,1, 2

12«min

2
Lmin2

1

2
,k,1.

~18!

Let us summarize the procedure to design the robust lo
controllers as follows:~i! We obtain the uncertain informa
tion @Eq. ~16!#. ~ii ! If the uncertain information satisfies con
ditions ~17!, we go to the next step; otherwise it is impo
sible to design the robust local controllers.~iii ! We
determine the feedback gainskl andk by Eqs.~18!.

IV. CONTROLLING A ONE-WAY COUPLED
LOGISTIC LATTICE

The above theoretical results depend only on the slopL
and the coupling strength«; hence various one-dimension
chaotic maps can be used as the local mapf in the DDFC
system. This paper uses the logistic map

f @x#5px~12x!

as a local map, since the map has already been investig
in detail.

The one-way coupled logistic map is described as

xn11~1!5pxn~1!„12xn~1!…,

xn11~ i !5~12«!pxn~ i !„12xn~ i !…1«pxn~ i 21!

3„12xn~ i 21!….

It is obvious that the slopeL at the UFP is given by

L522p.

From a practical viewpoint, we shall consider the followin
assumptions: the local mapf is unknown; the desired un
stable homogenous state is unknown; the uncertain infor
tion @Eqs.~16!# is obtained in advance.

Let us consider the one-way coupled logistic lattice w
N560, p53.91, and«50.1. We do not know this informa
tion (N,p,«) when we design the controllers; on the oth
hand, the uncertain informationLmin521.95, Lmax5
21.50, «min50.05, and«max50.20 is obtained in advance
Since23,Lmin and Lmax,1, there exist robust local con
trollers such that the uncertain control system is stable.
feedback gains can be chosen from 0.475,kl,1 and
0.426 25,k,1; then we setkl5k50.5. It is undesirable for
the control signal to be large when the local orbit is far fro
the UFP, since such a signal may make the control sys
fall into a divergence regime. To this end, we employ loc
watchers for every site. Each local watcher is described

un~ i !5 Hun~ i !
0

if uun~ i !u,n
if uun~ i !u.n,

where the thresholdn is a small positive value. Figure 2
shows the numerical control results. Figure 2~a! is the space-
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time plot for the 60 coupled one-way logistic maps w
local controllers and watchers. The system runs freely@i.e.,
un( i )50# until n51000, and then the controllers and watc
ers start to work atn51000. Initially the first sitexn(1)
converges onxf by the first local controller. After that, all the
sitesxn( i ) ( i 52, . . . ,60)converge onxf in the order of the
site number. Figures 2~b! and 2~c! show the local time serie
on the edge of the OCML@i.e., xn(1), xn(60)#.

The feedback pining technique@26–28# employed distrib-
uted controllers at several spatial locations; conversely,
DDFC proposed in the present paper requires a local con
ler for every site. From our theoretical results, we know t
if at least one local controller, that is theM th controller, is
cut off @i.e., un(M )50#, then the higher sitesxn( i ) ( i
5M ,M11, . . . ,N) cannot be stabilized. Figure 3~a! shows
the space-time plot for the same system as Fig. 2. We cu

FIG. 2. Numerical control of the one-way coupled logistic la
tice with N560, p53.91, and«50.1. The local controllers and
watchers are set askl5k50.5 andn50.02. The controllers and
watchers start to work atn51000.~a! The space-time plot.~b! The
local time series of the first sitexn(1). ~c! The local time series of
the 60th sitexn(60).

FIG. 3. Numerical control of the one-way coupled logistic la
tice with N560, p53.91, and«50.1. The local controllers and
watchers are set askl5k50.5 andn50.02. The controllers and
watchers start to work atn51000, and we cut off the 40th loca
controller@i.e., un(40)50# at n58000.~a! The space-time plot.~b!
The local time series of the first sitexn(1). ~c! The local time series
of the 60th sitexn(60).
-

e
l-
t

ff

the local controller of the 40th site atn58000, while other
controllers and watchers continue to work. Aftern58000,
the 40th site and higher sitesxn( i ) ( i 541,42, . . . ,60) be-
have chaotically. We can see that higher controllers can
stabilize the higher sites due to chaotic behavior of the 4
site. Figures 3~b! and 3~c! are the local time series ofxn(1)
andxn(60).

As can be seen from Fig. 2, all sitesxn( i ) converge onxf
in the order of the site number. Now we focus on the time
achieve the stabilization of the homogenous state. We e
mate the average time for each local site in Fig. 4, start
from 100 random initial conditions on the chaotic attract
The dots in Fig. 4 indicate the timeTm( i ) that is required to
achieve the stabilization ofxn( i ) for the mth initial condi-
tion. The bold line represents the average timeT̃( i ) to
achieve the stabilization:

T̃~ i !5
1

100 (
m51

100

Tm~ i !.

As is evident, the average timeT̃( i ) must be proportional to
the site number. From the above numerical results, the a
age timeT̃( i ) can be estimated as

T̃~ i !.42.1i 1198.2.

FIG. 4. Average time to achieve the stabilization of the sa
system as Fig. 2. The dots show the timeTm( i ) to achieve the
stabilization of thei th site for themth initial condition. The bold
line represents the average timeT̃( i ) for Tm( i ).

FIG. 5. Numerical control of the same system as Fig. 2 with
noisy signalshn . ~a! s50.005.~b! s50.006.~c! s50.007.
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Although the constant values of this experimental equa
depend on the local mapf, the coupling strength«, and the
watcher’s thresholdn, the linear relation may be retained fo
various values.

Stabilization in a noisy environment is an important iss
in view of practical applications. We add the noisy sign
shn to all the sites, wherehn is the random sequences in th
range@0,1#. Figure 5 shows the space-time plots of the sa
system as Fig. 2 for three-level noise amplitudes~s
50.005, 0.006, and 0.007!. It can be seen that if the ampl
tudes is 0.005 or less, then the stabilization of all the sites
achieved successfully@see Fig. 5~a!#. It should be noted tha
the sites never converge onxf , but always wander around i
On the other hand, if the amplitudes is 0.006 or more, the
stabilization cannot be achieved@see Figs. 5~b! and 5~c!#.
The crisis of the noise amplitude depends on the local maf,
the coupling strength«, and the watcher’s thresholdn.

V. CONCLUSIONS

In this paper we have shown that our DDFC techniq
can suppress turbulent behavior in the OCML. A theoreti
analysis gave the necessary and sufficient conditions for
control system to be stable. The conditions allowed us
derive the procedure to design the robust local controll
pl.

ci.

ys
n

e
l

e

s

e
l

he
o
s.

On the other hand, the conditions clarified that the DD
technique cannot stabilize a class of the OCML~i.e., L,
23 or L.1!. This is an inherent weak point of the DF
technique@4,11–15#. A discussion of this issue would carr
us too far from the purpose of this paper, thus we did not
to overcome this weak point. Furthermore, the theoret
results were verified by some numerical simulations.

The present paper focused on the stabilization of the
stable homogeneous state of the OCML. The control of co
plex patterns or high-period periodic orbits is also an instr
tive issue for studies of associate memory in dynami
systems. There is room for further investigation.

Our DDFC technique could be applied to a stabilizati
of networks of one-way coupled map lattices@36#. The sta-
bility of the networks could be analyzed by the results of t
present paper. We will investigate this stability in detail, a
report on this elsewhere.

ACKNOWLEDGMENTS

This work was partially supported by a Grant-in-Aid fo
Scientific Research from the Ministry of Education, Spor
Science and Culture, Government of Japan~Grant No.
09750076!.
S.

n,

ev.

. E
@1# E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett.64, 1196
~1990!.

@2# G. Chen, ftp: ftp.egr.uh.edu/pub/TeX/chaos.tex~login name:
anonymous; password: your email address!.

@3# K. Pyragas, Phys. Lett. A170, 421 ~1992!.
@4# S. Bielawski, D. Derozier, and P. Glorieux, Phys. Rev. A47,

2492 ~1993!.
@5# S. Bielawski, D. Derozier, and P. Glorieux, Phys. Rev. E49,

971 ~1994!.
@6# K. Pyragas and A. Tamasevicius, Phys. Lett. A180, 99 ~1993!.
@7# M. Ye, D. W. Peterman, and P. E. Wigen, Phys. Lett. A203,

23 ~1995!.
@8# T. Hikihara and T. Kawagoshi, Phys. Lett. A211, 29 ~1996!.
@9# M. E. Bleich and J. E. S. Socolar, Phys. Lett. A210, 87

~1996!.
@10# W. Justet al., Phys. Rev. Lett.78, 203 ~1997!.
@11# H. Nakajima, Phys. Lett. A232, 207 ~1997!.
@12# T. Ushio, IEEE Trans. Circuits Syst. I: Fundam. Theory Ap

43, 815 ~1996!.
@13# M. de Sousa Vieira and A. J. Lichtenberg, Phys. Rev. E54,

1200 ~1996!.
@14# M. Ishii, K. Konishi, and H. Kokame, Phys. Lett. A235, 603

~1997!.
@15# K. Konishi, M. Ishii, and H. Kokame, Phys. Rev. E54, 3455

~1996!.
@16# G. Hu, Z. Qu, and K. He, Int. J. Bifurcation Chaos Appl. S

Eng.5, 901 ~1997!.
@17# L. Kocarev, U. Parlitz, T. Stojanovski, and P. Janjic, Ph

Rev. E56, 1238~1997!.
@18# C. Lourenco and A. Babloyantz, Neural Comput.6, 1141

~1994!.
.

@19# C. Lourenco and A. Babloyantz, Int. J. Neural Syst.7, 507
~1996!.

@20# M. E. Bleich and J. E. S. Socolar, Phys. Rev. E54, 17 ~1996!.
@21# M. E. Bleich, D. Hochheiser, J. V. Moloney, and J. E.

Socolar, Phys. Rev. E55, 2119~1997!.
@22# K. Kaneko, Chaos2, 279 ~1992!.
@23# V. V. Astakhov, V. S. Anishchenko, and A. V. Shabuni

IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.42, 352
~1995!.

@24# D. Auerbach, Phys. Rev. Lett.72, 1184~1994!.
@25# K. Konishi and H. Kokame, Physica D100, 423 ~1997!.
@26# Y. S. Kwon, S. W. Ham, and K. K. Lee, Phys. Rev. E55, 2009

~1997!.
@27# R. O. Grigoriev, M. C. Cross, and H. G. Schuster, Phys. R

Lett. 79, 2795~1997!.
@28# H. Gang and Q. Zhilin, Phys. Rev. Lett.72, 68 ~1994!.
@29# P. Parmanada and Y. Jiang, Phys. Lett. A231, 159 ~1997!.
@30# P. Parmanada, M. Hildebrand, and M. Eiswirth, Phys. Rev

56, 239 ~1997!.
@31# F. H. Willeboordse and K. Kaneko, Phys. Rev. Lett.73, 533

~1994!.
@32# F. H. Willeboordse and K. Kaneko, Physica D86, 428~1995!.
@33# J. W. Shuai, K. W. Wong, and L. M. Cheng, Phys. Rev. E56,

2272 ~1997!.
@34# J. H. Xiao, G. Hu, and Z. Qu, Phys. Rev. Lett.77, 4162

~1996!.
@35# R. Isermann,Digital Control Systems~Springer-Verlag, Berlin,

1989!.
@36# G. Hu, J. Yaung, F. Xie, and Z. Qu, Phys. Rev. E56, 2738

~1997!.


