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Decentralized delayed-feedback control of a coupled map model for open flow
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A decentralized delayed-feedback control of a coupled map model for open flow is studied theoretically. The
decentralized controllers can suppress turbulent behavior in the open flow model. The stability of the control
system is analyzed, and then we provide a procedure to design the decentralized controllers from uncertain
information of the local map and the coupling strength. The theoretical results are verified by some numerical
simulations[S1063-651X98)06209-4

PACS numbes): 05.45+b

I. INTRODUCTION technique for controlling the CML’s has been discussed
theoretically[26,27] and numericall\{28]. Parmananda and
Ott, Grebogi, and Yorke proposed a methgde OGY  Jiang proposed a control technique that uses the difference
method that stabilizes chaotic motions onto a desired un-between a local state and a global average of the CML's
stable periodic orbitUPO) [1]. The OGY method has gen- [29]. Parmananda, Hildebrand, and Eiswirth proposed sev-
erated great interest in the study of nonlinear sci¢@¢eOn  eral techniques based on the OGY and DFC methadk
the other hand, Pyragas proposed a delayed-feedback control The bifurcations and pattern dynamics in an open flow
(DFC) method that does not require a reference signal cormodel described by a one-way coupled map lat@EML)
responding to the desired UP[3]. The DFC method is a have been studied in detdB1,32. The synchronization of
practical tool for stabilizing real chaotic systems. As a conthe OCML has been investigated by the positive conditional
sequence, this method has been successfully applied to s&Wapunov exponenti33]. The synchronization has been ap-
eral physical systems: laser systefs], electronic circuits plied to multichannel spread-spectrum communicafie4i.
[6], thin yttrium iron garnet film$7] and a magnetomechani- The syppression of turbulent behavior in the OCML corre-
cal system(8]. The stability of the DFC systems has beeng,,nds 1o transformation of open flow systems from a turbu-
analyzed by several researchegi@-11. Furthermore, a lent state to a laminar flow; hence, from a practical view-

discrete-time version of this method has been studied in deﬁoint the stabilization of the homogeneous state in the
tail [4,12-13. Most of these studies on the OGY and DFC OCML is an important issue. The paucity of reports on this

methods dealt with temporal chaotic behavior in low-. . . .
issue prompted us to investigate it.

dimensional systems. .
y The purpose of the present paper is to propose a decen-

In recent years, investigations of spatiotemporal chaotic . -
behavior and studies on controlling spatiotemporal chaotit’iraIIZGd delayed-feedback cont@®DFC) to stabilize an un-

systems have attracted much intefé—30. Spatiotempo- stable homogenous state of the OCML. This control system
ral chaos occurs in partial different equatiofBDE’S does not require information about the unstable homogenous

coupled ordinary equatiol€OE’S) or coupled map lattices State. For every local site a delayed-feedback controller is
(CML’s). Although PDE’s and COE’s are exact models of used as a local controller. Each of the local controllers does
real systems, the theoretical and numerical analyses of thefpt require information about other sites; therefore, it would
is difficult. Conversely, it is easy to analyze the behavior ofbe easy to apply our control to practical open flow systems.
the CML's in theoretical and numerical works, since it hasThis paper analyzes the stability of the control system theo-
discrete time, discrete space, and continuous state variablestically, and gives a solution for the problem of designing
The CML's cannot identify real systems exactly; however, itthe local controllers. Very recently, Ishi, Konishi, and
can display a behavior qualitatively similar to that of more Kokame discussed a robust control problem for the extended
realistic models. Hence the CML's have been widely invesdelayed-feedback control systgi4]. We also discuss the
tigated by many researchdi2]. In particular, various tech- robust control problem for the OCML, and show some nu-
niques have been proposed to control the CMI28-30.  merical examples to verify the theoretical results.

On the basis of the OGY approach, Astakhov, Anishchenko, Thijs paper is organized as follows. Section Il describes
and Shabunin proposed a method for controlling a chain ofhe OCML and the control system. In Sec. IlI, we discuss the
the logistic mapg23]. Auerbach showed how an unsym- giapijity of the control system and give a procedure to design
metrical CML can be controlled to behave periodically by the ropust local controllers. In Sec. IV, we use the logistic

the distributed controllers at several spatial locatif®4].  map as the local map and present some numerical simula-

nique can stabilize the CML'$25]. A feedback pinning

Il. CONTROL SYSTEM
*Author to whom correspondence should be addressed. FAX:

+81-722-52-6782. Electronic address: konishi@ecs.ees.osakafu- Let us consider a one-way coupled map lattice with slze
u.ac.jp (N-OCML),
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Xn+1(1)=f[xn(D)],

Xne1(D)=(1=e)f[xa(D)]+ef[xa(i—1)] (i=23,... N,
@

wheren is the discrete timei, is the lattice sitex,(i) is the
system stateN is the system sizef is an unknown one-
dimensional local map, and the parametes (0,1) is the
coupling strength. In the case e=0, each local site be-
haves independently. THd-OCML has an unstable homo-
geneous state

[Xn(1) Xn(2) = Xo(N)IT=[x; X = x]T,  (2)
Xf:f(Xf), (3)

wherex; is the unstable fixed poirftyFP) of the local mag.
Note that each element of EQ) is the UFP of the local
map. The purpose of this paper is that all sites converge o
Xs, that is

lim x,(i)=x; (i=1,2,...N),

n— +o

by the local delayed-feedback controllers. We consider
DDFC system

Xn+1(1)=f[xn(1)]+un(1),
Xn+1(1)=(1=&)f[X,(1) ]+ ef[Xp(i—1)]
+uy(i) (i=2,3,...N).

(4)

The local controllers are given by

Un(1) =k[Xn(1) —Xn-1(1)], FIG. 1. Stable regions on the-k plane.(a) The stable region of
U =KX (D) =X 1()]  (i=2.3, ... N). (5) Eq. (9). (b) The stable region of Eq13)

wherek;, k are the feedback gains. Notice that each loca
controller does not use other site information. In Sec. Ill, we
shall analyze the stability of a DDFC system consisting ofequation

fs the slope of the local maipat the unstable fixed poin; .
Matrix (6) has eigenvalues that are given as solutions of the

Egs.(4) and(5). AN2=N(A+k)+k=0. 9
. STABILITY ANALYSIS Jury’s criterion[35] allows us to derive the stability condi-

In the OCML, it should be noted that the local sitg(i)  tion of the first site{see Fig. 1a)]:

is influenced only by th@revioussite x,(i —1). Now let us —3<A<1

assume that all the sites (i) (i=2,3, ... N) will be stabi- '

lized in the order of the site number: a local sigi) will be 0<1+A+2k, (10)

stabilized ontox; after the previous sit&,(i—1) is stabi-

lized. The above assumption simplifies the stability analysis. k<1.

To begin with, we shall focus on the stability of the first
sitex,(1). Since the first site is not influenced by other sites,Conditions(10) are equal to the results of the papptsl4).
it is easy to derive the stability condition. The first site sys- Next, we consider the stability of tHéh sitex,(i). If the

tem can be linearized as site x,(i—1) is stabilized ontok;, the equation of théth
1 A+k 1 site and thdth local controller will be described by
yn+l(1; _ 1 | yn(lﬂ, (6)
Zp+a( Zy( Xn+1(1) = (L=&)F[Xn(i) ]+ eX +K[Xn(i) =Xn-1(1)].
Yo(D)=Xa(1) =X, Za(1)=Xn-2(1) =Xy, D This system can be linearized as
where Yn+1(i)}:[(1_8)/\+k —k ynm} w
_of(x) ® Zp44(1) 1 zy(i) |’
X

X=X Ya()=Xa(D) =X, Zy(1)=Xq_1()=X;. (12
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The stability condition of the characteristic equation of ma-

trix (11),

A=A\ {(1—e)A+k}+k=0, (13
is given by the inequalities
- 1—8<A<_1— ,
0<2k+(1—e)A+1, (14)

k<1.

Conditions(14) are illustrated in Fig. (b).
The OCML has a propagation of activity in only one di-
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_3<Amin1 Ama1><<:|-1 (17)
then there exist local controlle(S) such that condition&10)
and(14) are satisfied. If condition@l7) are satisfied, then we
can design robust local controllers. The feedback gains of

local controllers(5) should be chosen from

1
2

1—-emin

2

1
Amin_ §< k<1.
(18

1
Amin_ E<k|<1, -

Let us summarize the procedure to design the robust local
controllers as follows(i) We obtain the uncertain informa-
tion [Eq. (16)]. (ii) If the uncertain information satisfies con-
ditions (17), we go to the next step; otherwise it is impos-

rection; therefore, the complexity of the dynamics can besible to design the robust local controllersii) We

reduced. The above simple stability conditiati) and(14)

determine the feedback gaiksandk by Egs.(18).

are due to the reduction in the complexity. On the other

hand, if the connection of the lattices was two way, the dy-
namics would be complicated. It should be noted that our

IV. CONTROLLING A ONE-WAY COUPLED
LOGISTIC LATTICE

simple results cannot be applied to two-way connection sys-

tems.

From the above analysis, we see that all sites converge
X¢ in the order of the site number, if the following conditions
are satisfiedii) The first site satisfies conditiond0). (ii)
The first site orbitx,(1) without control sometime visits the
neighborhood ofk; . (iii) The other sites satisfy conditions
(14). (iv) The other site orbitx,(i) without control some-
time visit the neighborhood ok; when the previous sites
Xn(i—1) have been stabilized ax,. From Figs. 1a) and
1(b), we note that there exist local controllgfs such that
the conditions(10) and (14) are satisfied if and only if the
slope A exists within the following range:

—3<A<LL.

This clarifies that local controller®) cannot stabilize a class
of the OCML (i.e., A>1 or A<—3). Furthermore, the
stable regions shown in Figs(dl and Xb) allow us to de-
sign the local controllers theoretically. Conditiofl)) and
(14) are satisfied if the feedback gains of the local controller
are chosen from

1o ol

Alk1
PR

(15
This is a procedure to design the local controllersaljyriori
knowledge of A and ¢. If the slope A and the coupling
strengthe were obtained in advance, inequaliti@$) would

The above theoretical results depend only on the slope

d the coupling strengtéy hence various one-dimensional
chaotic maps can be used as the local rhap the DDFC
system. This paper uses the logistic map

fx]=px(1—x)

as a local map, since the map has already been investigated
in detail.
The one-way coupled logistic map is described as

Xn+1(1) = PXa(1) (1= X4(1)),
Xn+1(1) = (1= &) pXq(i) (L =Xn(i)) +epXp(i —1)
X (1—x%,(i—1)).
It is obvious that the slopd at the UFP is given by
A=2-p.

SFrom a practical viewpoint, we shall consider the following

assumptions: the local mapis unknown; the desired un-
stable homogenous state is unknown; the uncertain informa-
tion [Egs.(16)] is obtained in advance.

Let us consider the one-way coupled logistic lattice with
N=60, p=3.91, ands =0.1. We do not know this informa-
tion (N,p,e) when we design the controllers; on the other
hand, the uncertain informatiomA ,;,=—1.95, A=
—1.50, £,;n=0.05, ande,,,,=0.20 is obtained in advance.

provide a useful design procedure. In most practical situaSince —3<A, and A <1, there exist robust local con-

tions, however, it is difficult to obtain a precigeande. For

trollers such that the uncertain control system is stable. The

such situations, we have to consider the robust control profeedback gains can be chosen from 04kp<1 and

lem to design the controllers by the uncertain information.
Let us assume that the uncertain information

Amin<A<Amax

(16)

Emin<€ <&maxs

is obtained in advance. The problem to be investigated is t

design the local controllers such that the control systéns
and (11), including uncertaintie$16), are stable. To begin

0.426 25<k<1; then we sek,=k=0.5. It is undesirable for
the control signal to be large when the local orbit is far from
the UFP, since such a signal may make the control system
fall into a divergence regime. To this end, we employ local
watchers for every site. Each local watcher is described as

o

it ua(i)|<v
it [ua(i)|>»,

Un(i)
0

Un(i)

with, we derive a sufficient condition for the existence of the
robust local controllers. We notice that if the lower and up-where the threshold’ is a small positive value. Figure 2
per limits of A satisfy shows the numerical control results. Figufe)ds the space-
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4000
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T(l')

2000
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FIG. 4. Average time to achieve the stabilization of the same
system as Fig. 2. The dots show the timg(i) to achieve the
stabilization of theith site for themth initial condition. The bold
line represents the average timé) for T(i).

X(1)

X(60)

& 555 o 5 S0 the local controller of the 40th site at=8000, while other

Time n controllers and watchers continue to work. Aftes8000,

FIG. 2. Numerical control of the one-way coupled logistic lat- Lhe 4Otr:] S't_e ﬁndvf\;lgher S'teﬁ('h) (Ih:' 1]1’42 T ,ﬁO) be-
tice with N=60, p=3.91, ande=0.1. The local controllers and avg ,C aotlca. Y- e_ can see that '9 er Conftro ers cannot
watchers are set dg=k=0.5 andv=0.02. The controllers and stabilize the higher sites due to chaotic behavior of the 40th

watchers start to work at=1000.(a) The space-time plotb) The  Site. Figures &) and 3c) are the local time series od,(1)

local time series of the first site,(1). (c) The local time series of andx,(60). ) ] ]
the 60th sitex,,(60). As can be seen from Fig. 2, all sitgg(i) converge orx;

in the order of the site number. Now we focus on the time to
achieve the stabilization of the homogenous state. We esti-
mate the average time for each local site in Fig. 4, starting
from 100 random initial conditions on the chaotic attractor.
The dots in Fig. 4 indicate the timE, (i) that is required to
achieve the stabilization of,(i) for the mth initial condi-
tion. The bold line represents the average tif@) to

time plot for the 60 coupled one-way logistic maps with
local controllers and watchers. The system runs fréiedy,
u,(i)=0] until n=1000, and then the controllers and watch-
ers start to work an=1000. Initially the first sitex,(1)
converges ox; by the first local controller. After that, all the

sitesx,(i) (i=2,...,60)converge orx; in the order of the : N
site number. Figures(B) and Zc) show the local time series 2chieve the stabilization:
on the edge of the OCML.e., x,(1), X,(60)]. 100
The feedback pining techniqiig6—28 employed distrib- 7I'(i)= i S T.00)
uted controllers at several spatial locations; conversely, the 1004y ™7

DDFC proposed in the present paper requires a local control-

ler for every site. From our theoretical results, we know thatAS is evident, the average tirﬁ'e(i) must be proportional to

if at Ieas'_[ one local controller, that is_tMth c_ontrol_ler, ?S the site number. From the above numerical results, the aver-
cut off [i.e., u,(M)=0], then the higher sitex,(i) (i age time?(i) can be estimated as
=M,M+1,... N) cannot be stabilized. Figurge&@ shows 9

the space-time plot for the same system as Fig. 2. We cut off

T(i)=42.1+198.2.

Site i

Site i

(1)

5
3 Sl
A e L T
X o R R e N Lk SRt e, (C)
0 2600 4000 6000 8000 %&ﬁ_ F’gé’zﬁfﬁﬁg, $f" { 3553-.‘-%2 6=0.007
Time n _ 4o ALt %ﬂ- g%‘;f‘*
| -, s TR
FIG. 3. Numerical control of the one-way coupled logistic lat- n 20 e ORTGal ,:‘é“.a%{v&*ggbf &
tice with N=60, p=3.91, ande=0.1. The local controllers and RS ;% et S
watchers are set dg=k=0.5 and»=0.02. The controllers and et

watchers start to work at=1000, and we cut off the 40th local
controller[i.e., u,(40)=0] atn=8000.(a) The space-time plotb)
The local time series of the first sigg(1). (c) The local time series FIG. 5. Numerical control of the same system as Fig. 2 with the
of the 60th sitex,(60). noisy signalo 7, . (8) =0.005.(b) o=0.006.(c) o=0.007.
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Although the constant values of this experimental equatiorOn the other hand, the conditions clarified that the DDFC
depend on the local malp the coupling strengtla, and the technique cannot stabilize a class of the OCMe., A<
watcher’s threshold, the linear relation may be retained for —3 or A>1). This is an inherent weak point of the DFC
various values. technique[4,11-19. A discussion of this issue would carry
Stabilization in a noisy environment is an important issueus too far from the purpose of this paper, thus we did not try
in view of practical applications. We add the noisy signalto overcome this weak point. Furthermore, the theoretical
o1, to all the sites, wherey, is the random sequences in the results were verified by some numerical simulations.
range[0,1]. Figure 5 shows the space-time plots of the same The present paper focused on the stabilization of the un-
system as Fig. 2 for three-level noise amplitudes  stable homogeneous state of the OCML. The control of com-
=0.005, 0.006, and 0.007It can be seen that if the ampli- plex patterns or high-period periodic orbits is also an instruc-
tudeo is 0.005 or less, then the stabilization of all the sites istive issue for studies of associate memory in dynamical

achieved successfullsee Fig. §)]. It should be noted that
the sites never converge ap, but always wander around it.
On the other hand, if the amplitudeis 0.006 or more, the
stabilization cannot be achievddee Figs. f) and 5c)].
The crisis of the noise amplitude depends on the local fpap
the coupling strengtls, and the watcher’s threshold

V. CONCLUSIONS

systems. There is room for further investigation.

Our DDFC technique could be applied to a stabilization
of networks of one-way coupled map lattided6]. The sta-
bility of the networks could be analyzed by the results of the
present paper. We will investigate this stability in detail, and
report on this elsewhere.
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